The PF-1000 is the world’s largest Plasma-Focus device. Its operation is based on the pulsed electrical discharge through gases between two coaxial electrodes separated by an insulator. High voltage applied to the electrodes immersed in low pressure (of the order of a few torrs) gases causes an electrical breakdown along the insulator. The fast rise of the current (with ~5µs time scale) leads to the formation of a plasma sheath, which, driven by the force, moves along the electrodes toward their opened end. During this process, the plasma sheath accelerates to the velocity of ~107 cm/s and the current rises up to ~3 MA. After reaching the central electrode edge the sheath collapses toward the axis forming a dense (up to 1020cm-3), hot (~1 keV), elongated plasma structure called “pinch”. The rapid development of MHD instabilities causing disruption of the pinch is accompanied by an intense burst of ionizing radiation: soft and hard X-rays, electrons, ions, and neutrons. The neutrons are from D-D reaction when deuterium is used as a fill gas. A fast (> 100km/s) plasma stream is also generated along the axis.

It is worthwhile mentioning that the PF-1000 is one of the most intense pulsed neutron sources with the yield of 5x1011 neutrons/per discharge. The device is still far from being optimized and achieving 5x1012 or even up to 1013 neutrons/per discharge seems feasible.

The plasma produced using plasma-focus generators has been, and continues to be, the subject of intensive research for many years in a number of countries, such as the United States, Russia, Italy, France, Germany, the Czech Republic, Singapore, India, Argentina, and several others.

The machine occupies three levels of the experimental building with a total surface of 5.154 m2 and a volume of 32.340 m3. The basic elements of the PF-1000 are:

 
Animation of PF operation

 

Plasma in the PF-1000U system:

- allows to carry out fundamental studies of non-linear processes accompanying the flow of very large currents (up to 3 MA) through plasma with the density of 1018 -1019 cm-3, such as: kinetic instabilities, MHD instabilities, current channel filamentation processes, formation of force-free structures, etc. These processes are universal in nature - similar phenomena are observed in the Universe (filamentary structures, protuberances) and on Earth (atmospheric discharges, light balls);

- under conditions of high temperature and density, the plasma produced in PF-type systems undergoes intense fusion processes of light nuclei (D-D type reactions) and is therefore an interesting object of study for controlled thermonuclear fusion;

- plasma-focus generators are still among the most efficient, pulsed neutron sources (~1011 – 1012 neutrons per discharge from the DD reactions);

- the intense plasma jets and directed beams of high-energy ions produced by PF generators are used to test materials for future fusion reactors;

- miniaturized plasma focus generators as efficient sources of X-rays and fast neutrons, have a range of potential applications such as remote detection of hazardous materials, defecto-scopy of fast-moving or rotating objects, etc.

The Plasma Focus PF-1000U, due to its technical parameters and modern diagnostic equipment, is a unique device in the world. This opinion is confirmed by the participation of the PF-1000U laboratory, as the first Polish research infrastructure, in the program "Transnational Access to Major European Infrastructures (FP6 - contract no. RITA-CT-2006-26095, acronym MJPF-1000). Under this program, the European Commission financed sixteen research projects proposed by teams of researchers from six countries (UK, Germany, Italy, Russia, Czech Rep. and Estonia).

 

The PF-1000U system consists of three main modules, namely:

  • A capacitor bank with a total capacity of 1,332 mF, consisting of twelve modules, each containing 24 low-inductive, high-voltage (50 kV) capacitors of 4,625 mF each, connected in parallel. The PF-1000U has a state-of-the-art automatic battery charge control system coupled with a simultaneous ignition control system.
Kondensatory PF1000U 2
The upper part of the capacitor bank of the PF-1000U

The basic parameters of the condenser bank are as follows:
- charging voltage - U0 = 20 - 45 kV,
- capacitance - C0 = 1.332 mF,
- the bank energy - E0 = up to 1064 kJ,
- min. inductance - L0 = 15 nH,
- quarter discharge time - t1/4 = 5.4 µs,
- short-circuit current - ISC = 12 MA.

In the capacitor bank of the PF-1000U system, at charging voltages in the range 20-40 kV, electrical energy in the order of 266 - 1064 kJ can be stored, which allows the plasma to be complimented (at a speed of over 300 km/s) by a magnetic field accompanying a current flow of 2-3 MA.

  • An experimental chamber with dimensions: diameter = 1.4 m, length = 2.5 m, made of stainless steel, connected to the current generator collector and surrounding the cylindrical, coaxial electrodes of the system. The outer electrode (cathode) consists of 12 rods made of stainless steel, while the inner electrode (anode), with a diameter of 23 cm and a length of 60 cm, was made of pure copper. The electrodes are separated by an 11.3 cm long alumina insulator covering the anode. The vacuum in the chamber is generated using a system of modern turbomolecular pumps.
Komora eksperymentalna PF1000U 3A Komora eksperymentalna PF1000U 3x
Experimental Chamber of the Plasma-Focus PF-1000U
Elektrody generatora plazmy PF1000U 4Aa Elektrody generatora plazmy PF1000U 4
Electrodes of the Plasma Focus PF-1000U generator
  • An automated diagnostic system for the measurement of radiation emitted from the plasma and its parameters together with an automatic data acquisition system.

The PF-1000U is equipped with two gas injection systems. The first (consisting of six electromagnetically controlled valves) allows a pulsed gas jet to be injected into the interelectrode space, near the insulator. It allows testing to be carried out at low working gas (deuterium) pressure in the generator chamber, providing the right conditions for electrical breakdown due to the locally increased pressure near the insulator. The second system, located inside the central electrode, allows for an increase in the amount of gas in front of the front of central electrode and thus an increase in the density of the plasma jet, used for material testing.

Investigations of the physical processes taking place in the plasma are carried out using an automated diagnostic system, which includes numerous diagnostics for measuring the electrical parameters of the generator as well as the plasma and the radiation emitted from it. Most of these are characterized by nanosecond and even sub-nanosecond resolution capabilities.

In order to eliminate strong electromagnetic interference accompanying high current discharges, the signals from the detectors (specially shielded or, if possible, housed in mobile Faraday cages equipped with their own autonomous power supply) are transmitted via fibre-optic lines to the main control and data acquisition system.

 

The various diagnostic systems, depending on the physical quantities they measure, can be grouped as follows:

- A world-unique 16-frame laser interferometer (radiation wavelength = 527.6 nm, pulse duration <1ns, inter-frame interval 10-20 ns) is designed and fabricated by the IPPLM staff used to record the plasma density distributions produced in the PF-1000U. The resulting interferograms cover a time interval of 220 nanoseconds. After processing with a special computer code, a sequence of plasma density distributions is obtained, allowing the plasma dynamics to be studied in the successive phases: the plasma column formation, the development of magneto-hydrodynamic instabilities and the process of final disintegration of plasma structures.

Schemat 16kadrowego interferometru laserowego
Scheme of the 16-frame laser interferometer
Zestaw zwierciadel 6Aa Zestaw zwierciadel 6Ab
A set of mirrors and laser beam splitting plates which, from a single laser pulse, form a train of 16 pulses
propagating with preset delays relative to the first pulse
Zestaw 16 miniaturowych zwierciadel 7 Zestaw 16 miniaturowych zwierciadel 7B
A set of 16 miniature mirrors projecting individual pulses from the created sequence into separate locations on the photographic film creating
(in conjunction with the reference beam) plasma interferograms for sixteen moments in time
Przykladowe interferogramy 8
Exemplary interferograms as recorded at times t = =30ns, t = 0ns, and t =30 ns.
(t = 0 corresponds to the first maximum of plasma density near the central electrode face)

- The four-cadence camera, based on an MCP-type image intensifier, allows the intensity distributions of soft and hard X-ray emission from the XUV plasma) to be recorded. The frame duration is less than 1.8ns, the interval between frames can be adjusted from 0-20 ns.

Kamera kadrowa 9A

Kamera kadrowa 9B

A four-frame camera capturing images of plasma in the XUV range

- The changing spectrum of emitted neutrons during the discharge is measured using the time-of-flight method with a spectrometer consisting of 8 mobile neutron probe sets (scintillator-photomultiplier-oscilloscope, FWHM~2.5ns) housed in fully autonomous Faraday cages. Each set has its own power supply and is triggered by fibre-optic lines. An automatic data acquisition system collects waveforms recorded by neutron probes placed at various distances from the neutron source (plasma column) along the axis of the system and perpendicular to it. A special computer code calculates the neutron spectrum f(E,t) from the recorded waveforms. Each set is equipped with a cylindrical collimator filled with boron carbide to ensure the elimination of scattered neutrons.

Mobilny zestaw do pomiarow 10
A mobile stand for time-domain neutron radiation measurements (scintillator – photomultiplier)

- A special probe consisting of a high-speed scintillator, a Micro-channel-plate (MCP) chip and a special oscilloscope with a 4 GHz frequency response is used to study the subtle structure of neutron emission. This set-up provides a temporal pulse recording resolution (FWHM) of < 0.8 ns.

- The total neutron emission and its anisotropy are measured using a set of five silver-containing activation counters placed at different angles to the system axis. In addition, counters reacting to fast neutrons (a beryllium counter and a yttrium counter) are installed.

- For technological studies of the processes of interaction of plasma streams with the surfaces of various materials, a special camera was built in 2013 to record images in a wide X-ray range characterized by increased sensitivity. The camera uses a second-generation MCP image intensifier cooperating with a suitable luminescent screen. The exposure time can be adjusted in the range 10 ns -1 µs.

- Four PIN-type diodes allow the plasma luminescence to be recorded in the visible and soft X-ray range at various locations in the plasma column with a time resolution of ~1 ns. The plasma temperature can be measured by covering the diodes with appropriately selected filters.

- The Plasma FocusPF-1000U is also equipped with a standard set of electrical diagnostics to monitor the operation of the current generator. The set includes Rogowski strips for current measurement placed in the collector and in the vacuum chamber near the cathode, eight magnetic probes for measuring the derivative of the current placed in the collector, and optionally three probes for measuring the magnetic field in the space between the electrodes and a capacitive probe for measuring the voltage between the electrodes.

More information about the PF-1000U generator diagnostic system.

 

List of publications of the international team conducting experimental research on the Plasma-Focus PF-1000U system (2014-2023)

Publications 2019-2023

1. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, B. Cikhardtova, D. Klir, J. Kravarik, V. Munzar, K. Rezac, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, D. Zaloga, E. Zielinska, Evolution of a pinch column during the acceleration of fast electrons and deuterons in a plasma-focus discharge. IEEE Transactions on Plasma Science (2019) 47, No 1, 339-345;

2. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, B. Cikhardtova, D. Klir,J. Kravarik, R. Kwiatkowski, V. Munzar, K. Rezac, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, D. Zaloga, E. Zielinska, Features of fast deuterons emitted from plasma focus discharges. Physics of Plasmas (2019) 26, 032702-1-10;

3. V. A. Gribkov, A. S. Demin, N. A. Epifanov, E. E. Kazilin, S. V. Latyshev, S. A.Maslyaev, E. V. Morozov, I. P. Sasinovskaya, V. P. Sirotinkin, K. N. Minkov, and M. Paduch, Damageability of the Al2O3 oxide coating on the aluminum substrate by pulsed beam plasma and laser radiation. Inorganic Materials: Applied Research (2019) 10, 339-346;

4. V. N. Pimenova, G. G. Bondarenkob, E. V. Dyominaa, S. A. Maslyaeva, V. A. Gribkova, I. P. Sasinovskayaa, N. A. Epifanova, V. P. Sirotinkina, G. S. Sprygina, A.Gaydarc, and M. Paduch, Influence of pulsed beams of deuterium ions and deuterium plasma on the aluminum alloy of Al-Mg-Li system. Inorganic Materials: Applied Research (2019) 10, 503-511;

5. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, B. Cikhardtova, D. Klir, J. Kravarik, R. Kwiatkowski, V. Munzar, K. Rezac, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, D. Zaloga, and E. Zielinska, Influence of an external additional magnetic field on the formation of a plasma column in a dense plasma focus. Physics of Plasmas (2019)26,1-7;

6. T. Laas, K. Laas, J. Paju, J. Priimets, S. Tõkke, B. Väli, V. Shirokova, M.  Antonov,V.A. Gribkov, E.V. Demina, V.N. Pimenov, M. Paduch, R. Matulka, M. Akel, Behaviour of tungsten alloy with iron and nickel under repeated high temperature plasma pulses, Fusion Engineering and Design 151 (2020) 111408;

7. M. Martsepp, T. Laas, K. Laas, B. Väli, V. Gribkov, M. Paduch, R. Matulka, Multifractal analysis of plasma irradiated tungsten alloy samples. AIP Conference Proceedings (2019) 2164, 12;

8. P. Kubes, M. Paduch, M. J. Sadowski, B. Cikhardtova, J. Cikhardt, D. Klir, J. Kravarik, R.Kwiatkowski, V. Munzar, K. Rezac, A. Szymaszek, K. Tomaszewski, E. Zielinska, D. Zaloga, M. Akel, „Characteristics of closed currents and magnetic fields outside the dense pinch column in a plasma focus discharge”, Phys. Plasmas, 27, 092702 (2020);

9. V. I. Krauz, M. Paduch, K. Tomaszewski, K. N. Mitrofanov, A. M. Kharrasov, A. Szymaszek and E. Zielińska,” Generation of compact plasma objects in plasma focus discharge”, Europhysics Letters (2020) 129, 15003-p(1-6);

10. V.A. Gribkov, I.V. Borovitskaya, E.V. Demina, E.E. Kazilin, S. V. Latyshev, S.A. Maslyaev, V.N. Pimenov, T. Laas, M. Paduch, S.V. Rogozhkin, Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition. Matter and Radiation at Extremes (2020) 5, 1-19;

11. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, D. Klir, J. Kravarik, R. Kwiatkowaski, V. Munzar, K. Rezac, A. Szymaszek, K. Tomaszewski, E. Zielinska, M. Akel, B. Cikhardtova, “Scenario of a magnetic dynamo and magnetic reconnection in a plasma-focus discharge”. Matter and Radiation at extremes (2020), No 5, 046401.

12. T. Laas, K. Laas, J. Paju, J. Priimets, S. Tõkke, B. Väli, V. Shirokova, M. Antonov, V.A. Gribkov, E.V. Demina, V.N. Pimenov, M. Paduch, R. Matulka, M. Akel, Behaviour of tungsten alloy with iron and nickel under repeated high temperature plasma pulses, Fusion Engineering and Design 151 (2020) 111408;

13. V.I. Krauz, K.N. Mitrofanov, M. Paduch, K. Tomaszewski, A. Szymaszek, E. Zielinska, V. I. Pariev, V. S. Beskin, Ya. N. Istomin, “Properties of toroidal magnetic fields in axial plasma flow on the PF-1000U plasma focus facility”, J.Plasma Phys. (2020), vol. 86, 905860607, 2020;

14. V.A. Gribkov, E.V. Demina, A.S. Demin, S.A. Maslyaev, V.N. Pimenov, M.D. Prusakova, V.P. Sirotinkin, S.V. Rogozhkin, P.V. Lyamkin, M. Paduch, “Influence of pulsed streams of deuterium ions and deuterium plasma on oxide dispersion strengthened ferritic steels”, Физика и химия обработки материалов, 2020, № 2, с. 16-27;

15. M.Akel, P.Kubes, M.Paduch, S.Lee, “Comparison of measured and computed neutron yield from PF1000 plasma focus device operated with deuterium gas”. Radiation Physics and Chemistry (2021),188, 109633;

16. S. K. H. Auluck, P. Kubes, M. Paduch, M. J. Sadowski, V. I. Krauz, S. Lee, L. Soto, M.Scholz, R. Miklaszewski, H. Schmidt, A. Blagoev, M. Samuelli, Y. S. Seng, S. V. Springham, A. Telebitaher, C. Pavez, M. Akel, S. L. Yap, R. Verma, K. Kolacek, P. L. C. Keat, R. S. Rawat, A. Abdou, G. Zhang, and T. Laas, ”Update on the scientific status of the plasma focus“, Plasma 4, 450-669 (2021), https://doi.org/10.3390/plasma4030033;

17. V. Gribkov, E. Demina, S. Maslyaev, V. Pimenov, M. Prusakova, V. Sirotinkin, S. Rogozhkin, P. Lyamkin, M. Paduch, “Effect of pulsed fluxes of deuterium ions and deuterium plasma on oxide dispersion strengthened ferritic steels”. Inorganic Materials: Applied Research (2021) 12, 601-609 https://doi.org/10.1134/S2075113321030126;

18. V. N. Pimenova, I. V. Borovitskayaa, V. A. Gribkova, A. S. Demina, N. A. Epifanova, b, S. A. Maslyaeva, E. V. Morozova, I. P. Sasinovskayaa, G. G. Bondarenkob, A. I. Gaydarc, and M. Paduch, “Influence of Pulsed Flows of Deuterium Ions and Deuterium Plasma on Cu–Ni and Cu–Ni–Ga Alloys”, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques”, (2022), Vol. 16, No. 1, pp. 33–41. © Pleiades Publishing, Ltd., 2022;

19. M.D. Prusakov, V.P. Sirotinkina, S.V. Rogozhkinb, P.V. Lyamkin and M.Paduch, “Effect of Pulsed Fluxes of Deuterium Ions and Deuterium Plasma on Oxide Dispersion strengthened Ferritic Steels”, Inorganic Materials: Applied Research, (2021), Vol. 12, No. 3, pp. 601–609.

20. M. Paduch, et al., Effect of High-Temperature Pulsed Deuterium Plasma on the Structure and Mechanical Properties of the Surface of Cu–Ga and Cu–Ga–Ni Alloys. Russian Metallurgy (2022) 1, 48-56

21. M. Paduch, et al., Influence of pulsed flows of deuterium ions and deuterium plasma on Cu-Ni and Cu-Ni-Ga alloys. Journal of Surface Investigation (2022) 16, 33-41

22. P.Kubes, M.Paduch, S.Auluck, et al., “Observation of filaments in mega-ampere dense plasma focus within pure deuterium by means of simultaneous schlieren and interferometry diagnostics”, Phys. Plasmas 30, 012710 (2023); doi: 10.1063/5.0124093;

23. R. Martins, J. B. Correia, P. Czarkowski, R. Miklaszewski, A. Malaquias, R. Mateus, E. Alves, M. Dias, „Irradiation damage on CrNbTaVWx high entropy alloys”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 538, (2023), Pages 212-217, doi.org/10.1016/j.nimb.2023.03.010;

24. R. Mateus, P. Czarkowski, R. Martins, C.M. Vitor, M. Dias, A.  Malaquias, R. Miklaszewski, E. Alves, “Ion beam analysis of W irradiated with deuterium-based plasma discharges at PF-1000U”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 541, (2023), Pages 279-285, doi.org/10.1016/j.nimb.2023.05.06;

 

Publications 2014-2018

1. E. Kowalska-Strzęciwilk, W. Skrzeczanowski,  A. Czarnecka, M. Kubkowska, M. Paduch, E. Zielińska, Principal component analysis of soft x-ray signals generated by the PF-1000 facility in experiments with solid targets.Physica Scripta (2014) T161, :014048(4pp);

2. E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M. J. Sadowski, V. Gribkov, M. Kubkowska, M. Paduch, M. Scholz, E. Zielińska, E. V. Demina, S. A. Maslyaev, V. N. Pimenov, Research on interactions of intense plasma-ion streams with a SiC target in a modified PF-1000 facility. Physica Scripta (2014) T161, :014039(5pp);

3. M. Kubkowska, E. Skladnik-Sadowska, Roch Kwiatkowski, K. Malinowski, E. Kowalska-Strzęciwilk, M. Paduch, M. Sadowski, T. Pisarczyk, T. Chodukowski, Z. Kalinowska, E. Zielińska, M. Scholz, Investigation of interactions of intense plasma streams with tungsten and carbon fibre composite targets in the PF-1000 facility. Physica Scripta (2014) T161, :014038(5pp);

4. Kortanek, P. Kubes, J. Kravarik, K. Rezac, D. Klir, M. Paduch, T. Pisarczyk, E. Zielińska, T. Chodukowski, Z. Kalinowska, Current flow and energy balance during the evolution of instabilities in the plasma focus. Physica Scripta (2014) T161, :014044(3pp);

5. K. H. Mitrofanow, W.I.Krauz, P. Kubes, M. Scholz, M. Paduch, E. Zielińska., Issledovanie osoennostej tonkoj struktury tokovoj plazmyennoj olochkie i magnitnyh polyej v priosyevoj olasti ustanovki PF-1000. Fizika Plazmy (2014) 40, 8:721-737;

6. S. Jednorog, B. Bieńkowska, M. Paduch, R. Prokopowicz, E. Łaszyńska, et al., Neutron activation of PF-1000 device parts during long-term fusion research. J Radioanal.Nucl.Chem. (2014) 10.1007/s10967-014:3522-2;

7. S. Jednorog, M. Paduch, E. Łaszyńska, et al., Radioindium and determination of neutron radial asymmetry for the PF-1000 plasma focus device. J. Radioanal. Nucl.Chem. (2014) 10.1007/s10967-014:3444-7;

8. P. Kubes, M. Paduch, J. Cikhardt, J. Kortanek, B. Batobolotova, K. Rezac, D. Klir, J. Kravarik, W. Surała, E. Zielińska, M. Scholz, L. Karpiński, M. J. Sadowski, Neutron production from puffing deuterium in plasma focus device, Physics of Plasmas (2014) 21, 082706:1-8;

9. F. Dąbrowski, Ł. Ciupiński, M. Paduch, Carbon fiber composite grade A412N resistance to intense plasma-ion streams emitted from PF-1000. Physica Scripta (2014) T161, 014043:1;-5;

10. K. Jakubowska, W. Skrzeczanowski, M. Paduch, M. Scholz, E. Zielińska, Principle component analysis of the spectroscopic and neutron parameters characterizing PF-1000 device plasmas, Applied Physics B (2014) 117, 389-394;

11. E. Skladnik-Sadowska, R. Kwiatkowski, M. Kubkowska, M. Paduch, E. Zielinska, et al., Research on interactions of intense deuterium plasma streams with SiC targets in plasma-focus experiments. Problems of atomic science and technology (2014) 20, 72-75:

12. P. Kubes, M. Paduch, J. Cikhardt, J. Kortanek, B. Cikhardtova, K. Rezac, D. Klir, J. Kravarik, E. Zielinska, Filamentary structure of plasma produced by compression of puffing deuterium by deuterium or neon plasma sheath on plasma-focus discharge.

Physics of Plasmas (2014) 21, 1-8;

13. K. Mitrofanov, V. Krauz, P. Kubes, M. Scholz, M. Paduch, E. Zielińska, Study of the Fine Structure of the Plasma Current Sheath and Magnetic Fields in the Axial Region of the PF-1000 Facility, Plasma Physics Reports (2014) 40, 8:623-639;

14. M. Paduch, E. Zielińska, et al., Energy- and time-resolved measurements of fast ions emitted from plasma-focus discharges by means of a Thomson spectrometer. Proceedings of SPIE (2015) 9662,  1-7;

15. M. Sadowski, M. Paduch, R. Miklaszewski, E. Zielińska, et al., Soft x-ray studies of plasma-focus pinch structures in PF-1000U experiments. Plasma Sources Science and Technology (2015) 24, 1-12;

16. V. Gribkov, M. Paduch, E. Zielińska, et al., Generation of shock waves in materials science experiments with dense plasma focus device. Inorganic Materials: Applied Research (2015) 6, 91-95;

17. A. Szydlowski, A. Malinowska, M. Paduch, et al., Influence of intense soft X-ray radiation of the parameters of tracks induced in CR-39 and PM-355 solid state nuclear track detectors, Radiation Measurements (2015) 83, 26-30;

18. P.Kubes, M. Paduch, J.Cikhart, E.Zielińska, et al., The evolution of the plasmoidal structure in the pinched  column in plasma focus discharge, Plasma Physics and Controlled Fusion (2016) 58, 1-7;

19. M. Paduch, E. Zielińska, et al., Evolution of the small ball-like structures in the plasma focus discharge., Nukleonika (2016) 61, 155-159;

20. M. Paduch, et al., Experiments and simulations on the possibility of radiative contraction/collapse in the PF-1000 plasma focus. Nukleonika (2016) 61, 145-148;

21. M.S.Ladygina, E. Skladnik-Sadowska, M. Kubkowska, E. Kowalska-Strzęciwilk, N. Krawczyk, M. Paduch, R. Miklaszewski, et al., Studies of plasma interactions with tungsten targets in PF-1000U facility. Nukleonika (2016) 61, 149-153;

22. B. Väli, T. Laas, J Paju, V Shirokova, M. Paduch, V. Gribkov, et al., The experimental and theoretical investigations of damage development and distribution in double-forged tungsten under plasma irradiation-initiated extreme heat loads. Nukleonika (2016) 61, 169-177;

23. A. Kasperczuk, M. Paduch, E. Zielińska, R. Miklaszewski, A. Szymaszek, et al., A plasma focus device as a metallic plasma jet generator, Laser and Particle Beams (2016) 34, 356-361;

24. E Skladnik-Sadowska, D Zaloga, MJ Sadowski, R Kwiatkowski, R. Miklaszewski, M. Paduch, E. Zielińska, et al., Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature. Plasma Physics and Controlled Fusion (2016) 58, 1-10;

25. H. Bruzzone, H.N Acuña, M.O. Barbaglia, M.M. Milanese R. Miklaszewski, M. Paduch, E. Zielińska, et al., Time-Varying inductance of the plasma sheet in the PF1000 plasma-focus device. IEEE Transactions on Plasma Science (2016) 44, 968-972;

26. F. Dąbrowski, Ł. Ciupinski, M. Kubkowska, G. Pełka, E. Kowalska-Strzęciwilk, W. Stępniewski, M. Paduch, E. Zielińska, et al., Investigation of tungsten surface changes after interaction with dense plasma streams compared with the results given by a simple 1D model. International Journal of Materials Research (2016) 107, 729-734.

27. M. Kubkowska, J. Kurzyna, M. Paduch, T. Pisarczyk, J. Wołowski, R. Zagórski, et al., 40 lat z fuzją termojądrową. Przegląd Techniczny (2016) , III-XII

28. E. Skladnik-Sadowska, S. A. Dan'ko, R. Kwiatkowski, M. J. Sadowski, D. R. Zaloga, M. Paduch, E. Zielinska, A. M. Kharrasov, and V. I. Krauz,  Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000 facility. Physics of Plasmas (2016) 23, 1-8;

29. P. Kubes, M. Paduch, B. Cikhardtova, J. Cikhardt, D. Klir, J. Kravarik, K. Rezac, J. Kortanek, E. Zielinska, M. J. Sadowski, and K. Tomaszewski, Interferometry and X-ray diagnostics of pinched helium plasma in a dense plasma focus with an Al.-wire on the axis. Physics of Plasmas (2016) 23, 1-8;

30. E. Skladnik-Sadowska, M. J. Sadowski, K. Malinowski, W. Surała, D. Zaloga, M. Paduch, E. Zielińska, K. Tomaszewski, Investigation of X-ray emission from high-current discharges of the PF type. Problems of Atomic Science and Technology (2016) 6, 112-116;

31. M. Chernyshova, V. Gribkov, E. Kowalska-Strzęciwilk, M. Kubkowska, R. Miklaszewski, M. Paduch, T. Pisarczyk, E. Zielińska, et al., Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices. Fusion Engineering and Design (2016) 113, 109-118;

32. P. Kubes, M. Paduch, B. Cikhardtova, J. Cikhardt, D. Klir, J. Kravarik, K. Rezac, E. Zielinska, D. Zaloga, M. J. Sadowski, and K. Tomaszewski, Influence of the Al. Wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge. Physics of Plasmas (2016) 23, 1-8;

33. S. Jednoróg, E. Łaszyńska, B. Bieńkowska, A. Ziółkowski, M. Paduch, K. Mikszuta, K. Malinowski, P. Potrykus, et al., A new concept of fusion neutron monitoring for PF-1000 device, Nukleonika (2017) 62, 17-22;

34. P. Kubes, M. Paduch, B. Cikhardtova, J. Cikhardt, D. Klir, J. Kravarik, K. Rezac, E. Zielinska, M. J. Sadowski, K. Tomaszewski, Filamentation in the pinched column of the dense plasma Focus, Physics of Plasmas (2017) 24, 1-10;

35. P. Kubes, M. Paduch, J. Cikhardt, B. Cikhardtova, D. Klir, J. Kravarik, K. Rezac, E. Zielinska, M. J. Sadowski, A.Szymaszek, K. Tomaszewski, and D. Zaloga, Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus. Physics of Plasmas (2017) 24, 072706;

36. P. Kubes, M. Paduch, J. Cikhardt, B. Cikhardtova, D. Klir, J. Kravarik, K. Rezac, E. Zielinska, M. Sadowski, A. Szymaszek, K. Tomaszewski, D. Zaloga, Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in centre of the anode end, Physics of Plasmas 24, 1-8;

37. A.Kasperczuk, M. Paduch, K. Tomaszewski, R. Miklaszewski, E. Zielinska, K. Jach, R. Swierczynski, W. Stepniewski, A. Szymaszek, Optimization of parameters of a copper plasma jet produced at the plasma focus device, Laser and Particle Beams (2017) 0263-0346, 8pp;

38. J. Paju, B. Vali,T. Laas, V. Shirokova, K. Laas, M. Paduch,V. A. Gribkov, E. V. Demina, M. D. Prusakova,V.  N. Pimenov, V. A. Makhlaj, M. Antonov,Generation and development of damage in double forged tungsten in different combined regimes of irradiation with extreme heat loads. Journal of Nuclear Materials (2017) 495, 91-102

39. V. Gribkov, B. Bieńkowska, M. Paduch, et al., Examination of a chamber of a large fusion facility by means of neutron activation technique with nanosecond neutron pulse generated by dense plasma focus device PF-6. Fusion Engineering and Design (2017) 125, 109-117;

40. V I Krauz, V V Myalton, V P Vinogradov, E P Velikhov, S S Ananyev,S A Dan’ko, Yu G Kalinin, A M Kharrasov, Yu V Vinogradova,K N Mitrofanov, M Paduch, R Miklaszewski, E Zielinska, E Skladnik, Sadowska, M J Sadowski, R Kwiatkowski, K Tomaszewski and D A Vojtenko,   laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities. IOP Conf. Series: Journal of Physics: Conf. Series 907 (2017) 012026

41. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, B. Cikhardtova, D. Klir, J. Kravarik, V. Munzar, K. Rezac, E. Zielinska, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, and D. Zaloga, Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus. Physics of Plasmas (2018) 25, 012712-1-9;

42. K. N. Mitrofanov, V.I. Krauz, E. V. Grabovski, V. V. Myalton, M. Paduch, and A. N. Gritsuk, Features of the application of the magnetic probe method for diagnostics of high temperature plasma, Instruments and Experimental Techniques (2018) 61, 239-259;

43. V.A. Gribkov, M. Paduch, E. Zielinska, A.S. Demin, E.V. Demina, E.E. Kazilin, S.V. Latyshev, S.A. Maslyaev, E.V. Morozov, V.N. Pimenov, Comparative analysis of damageability produced by powerful pulsed ion/plasma streams and laser radiation on the plasma-facing W samples. Radiation Physics and Chemistry (2018) 150, 20-29;

44. P. Kubes, M. Paduch, M. J. Sadowski, J. Cikhardt, B. Cikhardtova, D. Klir, J.Kravarik, V. Munzar, K. Rezac, E. Zielinska, E. Skladnik-Sadowska, A. Szymaszek, K. Tomaszewski, and D. Zaloga, Axial compression of plasma structures in a plasma focus discharge. Physics of Plasmas (2018) 25, 062712-1-9;

45. E Skladnik-Sadowska, S A Dan’ko, A M Kharrasov, V I Krauz, R Kwiatkowski, M Paduch, M J Sadowski, R D Zaloga, and E Zielinska, Influence of gas conditions on parameters of plasma jets generated in the PF-1000U plasma-focus facility. Physics of Plasmas (2018) 25, 082715-1-9.

HiPER fusionForEnergyLogo logo EUROfusion iter Laserlab Europe Fusenet European Commission Logo MEiN

Research projects carried out at the IPPLM are funded by the Polish Ministry of Education and Science, the National Science Centre and by the European Commission within the framework of EUROfusion Consortium under grant agreement No 101052200. Financial support comes also from the International Atomic Energy Agency, European Space Agency and LaserLab Consortium as well as from the Fusion for Energy Agency.

Go to top